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Abstract
EGFR mutations are a major prognostic factor in lung adenocarcinoma. However, current detection methods require
sufficient samples and are costly. Deep learning is promising for mutation prediction in histopathological image analysis
but has limitations in that it does not sufficiently reflect tumor heterogeneity and lacks interpretability. In this study, we
developed a deep learning model to predict the presence of EGFR mutations by analyzing histopathological patterns in
whole slide images (WSIs). We also introduced the EGFR mutation prevalence (EMP) score, which quantifies EGFR
prevalence in WSIs based on patch-level predictions, and evaluated its interpretability and utility. Our model estimates the
probability of EGFR prevalence in each patch by partitioning the WSI based on multiple-instance learning and predicts
the presence of EGFR mutations at the slide level. We utilized a patch-masking scheduler training strategy to enable the
model to learn various histopathological patterns of EGFR. This study included 868 WSI samples from lung adenocarci-
noma patients collected from three medical institutions: Hallym University Medical Center, Inha University Hospital, and
Chungnam National University Hospital. For the test dataset, 197 WSIs were collected from Ajou University Medical
Center to evaluate the presence of EGFR mutations. Our model demonstrated prediction performance with an area under
the receiver operating characteristic curve of 0.7680 (0.7607–0.7720) and an area under the precision-recall curve of
0.8391 (0.8326–0.8430). The EMP score showed Spearman correlation coefficients of 0.4705 (p = 0.0087) for p.L858R
and 0.5918 (p = 0.0037) for exon 19 deletions in 64 samples subjected to next-generation sequencing analysis.
Additionally, high EMP scores were associated with papillary and acinar patterns (p = 0.0038 and p = 0.0255, respec-
tively), whereas low EMP scores were associated with solid patterns (p = 0.0001). These results validate the reliability of
our model and suggest that it can provide crucial information for rapid screening and treatment plans.
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Introduction

Epidermal growth factor receptor (EGFR) is a crucial
gene for cellular regeneration and survival, and it plays
key roles in tissue repair and maintaining the cellular
microenvironment [1–4]. However, mutations in the
EGFR gene are linked to various cancers, including
non-small cell lung cancer (NSCLC), gallbladder
cancer, and glioblastoma [5–7]. Therefore, EGFR is an
important target for cancer treatment. In particular, the
development and clinical application of EGFR tyrosine
kinase inhibitors (EGFR-TKIs) have significantly imp-
roved the survival and clinical outcomes of NSCLC
patients with EGFR mutations. Consequently,
EGFR-TKIs are recommended as the standard first-
line treatment for patients with these mutations [8,9].
It is crucial to rapidly identify patients with mutations
to administer the appropriate treatment in a timely
manner. Although next-generation sequencing (NGS)
has enabled relatively fast mutational genomic
diagnostics [10], challenges such as difficulty in obtai-
ning sufficient samples and high costs persist [11].
In contrast, machine-learning-based whole slide

image (WSI) analysis has shown promise in various
medical fields [12–18] and has demonstrated satisfac-
tory performance in predicting mutational genomics
[16,19–21]. Predicting mutational genomics using
WSI is time- and cost-effective and, because it utilizes
previously collected samples, it has the potential to be
an effective alternative to mutational genomic testing.
In machine learning, a multiple-instance learning

(MIL) approach is employed for WSI analysis [22].
MIL is a type of weakly supervised learning method
that trains patch-level prediction models using slide-
level labels. This enables the learning of the spatial
heterogeneity of tumors and the prediction of slide-
level probabilities by aggregating patch-level predic-
tions. MIL is known to be effective for WSI analysis
[23–26] and has been utilized to successfully predict
the mutational genomics of various cancer types. For
instance, MIL-based approaches have been applied to
predict EGFR mutations in lung adenocarcinoma
[20,21], genetic alterations in gastric cancer [27], and
mutation status in breast carcinoma [28]. Moreover, a
hierarchical deep MIL model to predict gene mutations
in bladder cancer has been reported [19]. These studies
demonstrate the potential of MIL in capturing the spa-
tial heterogeneity of tumors and predicting clinically
relevant mutations from histopathology images across
various cancer types.
MIL can learn patch-level probabilities through

weakly supervised learning using only slide-level

labels. We hypothesized that, by utilizing this feature,
we could obtain the probability of EGFR mutation in
the entire tumor region and calculate the EGFR preva-
lence in WSI. To validate our hypothesis, we collected
histopathological patterns (lepidic, acinar, solid, papil-
lary, and micropapillary) from pathology reports and
analyzed the allele frequencies obtained through DNA
mutation testing, indirectly measuring the significance
of the predicted region. The proposed method effec-
tively addresses the limitations of previous studies
[20,21], which provided only binary predictions of
EGFR mutation status, by predicting the prevalence of
EGFR mutations.

Materials and methods

Data collection
We retrospectively selected data from patients with
histopathologically confirmed lung adenocarcinoma
who underwent EGFR mutation testing (PCR or NGS)
at four large independent institutions: Hallym
University Medical Center (HUMC) (n = 145), Inha
University Hospital (INHA) (n = 129), Chungnam
National University Hospital (CNUH) (n = 397),
and Ajou University Medical Center (AJMC) (n = 197)
from 2012 to 2022. We collected one WSI per patient,
totaling 868 WSIs. Detailed information on the cohort
and the relationship between clinical data and EGFR
mutations is presented in Table 1, and detailed infor-
mation on the WSIs is shown in Table 2.
To further validate the developed model, we col-

lected histopathological pattern information from
pathology reports (n = 197) and allele frequency data
from NGS results (n = 68) in the AJMC cohort. The
predominant histopathological pattern was defined as a
pattern (lepidic, acinar, solid, papillary, or micropapillary)
occupying more than 50% of the WSI, as described
by the pathologist in the pathology report. The
AJMC cohort was chosen as the test dataset because
it provided additional information for evaluating
the predictive performance of the model from multi-
ple perspectives. The Institutional Review Board
(IRB) of Ajou University Hospital approved this
study (AJOUIRB-MDB-2022-249). Furthermore, the
requirement for informed consent from all partici-
pants was waived by the IRB because of the retro-
spective nature of this study. All methods were
performed in accordance with the Declaration of
Helsinki.
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Preprocessing
The collected WSIs were scanned using Aperio equip-
ment. All WSIs were standardized to �20 magnifica-
tion using the Lanczos filter [29] to ensure uniform
cell and tissue sizes and then divided into fixed-size
(1,024 � 1,024 pixels) patch images for use as input
images for MIL.
To develop and evaluate the tumor region segmen-

tation model, the tumor regions were annotated by
experienced pathologists specializing in lung cancer
diagnosis and pathological examination. Pathologists
with over 3 years of clinical experience meticulously
labeled the boundaries of the cancerous tissue by
using the polygon tool in the open-source software
QuPath [30].
The patches were divided into non-tumor and tumor

regions, and background areas that were not tissue
regions were excluded using Otsu’s adaptive thres-
holding method [31] as per prior studies [32].
Variations in the tissue staining and scanning pro-
cesses between medical centers can occur. Methods
such as stain normalization [33] and Macenko
normalization [34] have been proposed to address
this, but we proposed RandStainNA [35], which
showed more diverse staining enhancement. The
method described above was applied to the patch
image for learning. We used ViT-B/14, a variant of
the vision transformer (ViT), to extract features from
the divided patch images. This model was pretrained
using the DINO algorithm on the ImageNet
dataset [36]. DINO is an unsupervised learning
technique that uses self-distillation to train models
and is commonly used with ViT models. It has also
been successfully applied to various medical image
analysis tasks. For instance, Wessels et al [37]
employed a self-supervised ViT pretrained with
DINO to predict survival from histopathology
images in renal cell carcinoma, thereby demo-
nstrating its effectiveness in capturing prognostic
information. Similarly, Li et al [38] utilized a
DINO-pretrained ViT for the weakly supervised his-
topathological image analysis of primary brain
tumors, showcasing its ability to learn discriminative
features from limited labeled data. These studies high-
light the potential of DINO-pretrained ViT models in
extracting meaningful representations from complex
medical images.
In this study, the pretrained ViT-B/14 model with

all frozen parameters was used to extract high-
dimensional features from the patch images. The input
image size was down-sampled to 518 � 518 pixels to
fit the ViT model. The extracted features were used
for subsequent analyses, including the prediction ofTa
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EGFR mutations. The detailed workflow from WSI
extraction to patch image feature extraction is illus-
trated in Figure 1.

Tumor region segmentation
To analyze EGFR mutations in the WSIs, we first
performed tumor region segmentation. The model
was trained using the WSSS4LUAD dataset [39].
WSSS4LUAD is a publicly available dataset specifi-
cally designed for the weakly supervised semantic
segmentation of lung adenocarcinoma histopathol-
ogy images. It consists of WSIs annotated with
patch-level labels for tumor and non-tumor regions
and is therefore appropriate for tumor region seg-
mentation. We classified the patch images into
tumor and non-tumor regions using a binary classifi-
cation model. The model used for the classification
was ViT-B/14.

MIL with patch-masking strategy
For predicting EGFR mutations, we used the MIL
model, specifically the dual-stream MIL (DSMIL)
model. The DSMIL consists of a two-stream architec-
ture. The first stream identifies the critical instance that
is expected to be most related to EGFR mutations
among the patches. The second stream calculates the
attention score by measuring the distance between each
instance and the critical instance, thereby evaluating the
importance of each instance. This approach is robust
even when the proportion of positive patches is low,
thereby addressing the data imbalance issues [22].
Considering the need to accurately detect a small num-
ber of patches related to EGFR mutations, the DSMIL
model was selected for this study. The structure of the
DSMIL used in this study is shown in Figure 2.
We also adopted masked hard-instance mining [40]

to train the model on various histopathological patterns

Table 2. Details of WSIs
AJMC HUMC CNUH INHA

Number of patients 197 145 397 129
Number of WSIs 197 145 397 129
Scanning magnification �20 197 126 69 129

�40 0 19 328 0
Microns per pixel 0.5025 � 0.0003 0.4695 � 0.0847 0.2479 � 0.0027 0.5000 � 0.0
Width 52,138 � 7,377 58,413 � 23,900 82,714 � 7,562 46,961 � 8,096
Height 40,922 � 6,179 42,932 � 16,835 114,027 � 19,933 56,232 � 10,464
Machine Aperio 197 145 397 129
Number of patches (1,024 � 1,024 pixel,
�20 magnification)

Tumor 140,857 77,805 213,844 79,628
Non-tumor 39,981 25,176 140,585 50,438

This table describes the details of the whole slide images (WSIs).

Figure 1. Preprocessing of WSIs. Mimetic diagram illustrating the preprocessing process of WSI data. Series of steps: extraction of patch
images from the original WSI, RandStainNA, and feature extraction. The ViT-B/14 DINO model was used for feature extraction.
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exhibiting EGFR mutations. This training strategy uses
two models: teacher and student. The teacher model
first calculates the patch-level attention score, which
indicates the relevance of each patch for the EGFR
mutation. The student model receives masked patches
as input and learns various histopathological patterns.
Figure 3 illustrates the process of masking the top
N% of patches based on the attention scores, focusing
the training on the more challenging and diverse histo-
pathological patterns that are less indicative of EGFR
mutations.
However, the fixed-ratio patch-masking method can

lead to the loss of common and easily classified histo-
pathological patterns of EGFR mutations during the
early stages of training. Therefore, we introduced a
patch-masking scheduler that dynamically adjusts
the masking ratio as training progresses. This allows
the model to learn the characteristics of tissues with
high EGFR mutation presence early in the training and
gradually increases the masking ratio to learn various
tissue patterns as the training continues. This process
enables the model to initially learn the easier histo-
pathological features and then the more complex
EGFR patterns as the training progresses. The teacher
model was used only during the training process and
not during the inference process. The training and
inference processes using the proposed model are
shown in Figure 4.

Artificial intelligence-based EGFR mutation
prevalence score in tumor areas
In the process of learning the presence of EGFR muta-
tions at the slide level, the MIL model learns the pre-
diction probabilities at the patch level. We proposed

an artificial intelligence (AI)-based EGFR mutation
prevalence (EMP) score that quantifies the prevalence
of EGFR mutation in the tumor region of WSIs. This
score is the ratio of the sum of the EGFR mutation
probability values predicted by the model at the patch
level to the total number of patches in the tumor
region, as shown in the formula below:

EMPscore¼
Pm

i¼1Mi

n
:

where n represents the total number of patches and Mi

represents the score of the ith patch among the m
patches where the presence of EGFR mutation is
predicted. By dividing the sum of the prediction prob-
abilities

Pm
i¼1Mi by the total number of patches n, we

obtained the EMP score, which represents the preva-
lence of tumor regions containing EGFR mutations in
the WSIs.

Results

Tumor region classification performance
The tumor region classification model, trained using
the WSSS4LUAD dataset, was evaluated using expert
annotations in our cohort. In the training data (CNUH,
INHA, and HUMC, n = 868), the model achieved an
area under the receiver operating characteristic curve
(AUROC) of 0.9048 (0.8826–0.9210) and an F1 score
of 0.7628 (0.7482–0.7871). In the test data (AJMC,
n = 197), the model achieved an AUROC of 0.8922
(0.8714–0.9224) and an F1 score of 0.7632
(0.7486–0.7822) (Table 3). For EMP, following

Figure 2. MIL architecture. Structure of dual-stream multiple-instance learning (DSMIL) model used for predicting EGFR mutations in
this study. DSMIL learns features of the patch with the highest probability of EGFR mutation and aggregates slide-level features based
on the attention score. During the training phase, the teacher model performs masking based on the predicted score.

5 of 12Deep learning for EGFR mutation prediction and prevalence analysis

© 2024 The Author(s). The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2024; 10: e70004

 20564538, 2024, 6, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/2056-4538.70004 by Jaesung H

eo , W
iley O

nline L
ibrary on [03/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



common practice in medical image analysis [41,42],
only patch images with a tumor prediction probability
above 0.5 were used. If no patches in a WSI had a
probability above 0.5, we sequentially applied lower
thresholds, and no WSIs had tumor patches with a
probability below 0.3.

Performance of deep learning model in predicting
EGFR mutation
In this study, we proposed a patch-masking scheduler
learning strategy that allows the model to learn easy
features related to EGFR presence early in training and
more difficult features as the training progresses. Our
model achieved an AUROC of 0.7680 (0.7607–0.7720)
and an area under the precision-recall curve
of 0.8391 (0.8326–0.8430) in the AJMC cohort

(n = 197), outperforming traditional MIL methods
(Table 4).

Evaluating EMP score in tumor areas
We quantitatively measured the AI-based EMP score,
which represents the prevalence of EGFR in the WSIs
based on patch-level predictions. We evaluated the
significance of the EMP score by comparing it with
the variant allele frequency (VAF) of EGFR muta-
tions using NGS and predominant histopathological
patterns.

Correlation between EMP score and allele
frequency
Spearman’s correlation analysis was performed to
compare the relationship between the EMP score and

Figure 3. Attention-based masking. Process of masking the top N% of patches with high EGFR mutation rate. By masking these patches,
the model can focus on learning various patterns, including the easy-to-distinguish features of EGFR mutation.
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VAF in tumor regions (n = 64). The two variables
showed a correlation of 0.3708 (p = 0.00679), indicat-
ing that higher EMP in tumor tissue corresponded to a
higher frequency of EGFR mutations in DNA, despite
not showing a strong correlation.

We also compared the results based on clinically
significant EGFR mutation subtypes, exon 19 deletion
(exon 19 del) and p.L858R, known for their dis-
tinct histopathological patterns [43,44] and trea-
tment responses [45]. Using fewer larger patches
(1,024 � 1,024 pixel patches from �20 magnification),
exon 19 del (n = 22) showed a correlation of 0.59184
(p < 0.00371), whereas exon 21 p.L858R (n = 30) did
not show any correlation (0.1704, p = 0.3689).
Conversely, using numerous smaller patches (512 � 512
pixel patches from �20 magnification), p.L858R showed
a correlation of 0.4705 (p = 0.00877), but exon 19 del
did not (0.0412, p = 0.8553) (Table 5). Figure 5
visually presents the EMP score as a heatmap based
on patch-level prediction probabilities, showing that
higher VAF scores tend to correspond to larger
regions of EGFR mutation presence.

Figure 4. Training and inference process. Process of learning and reasoning using MIL and patch-masking strategies. A teacher model is
utilized for learning various patterns during the training phase and is not involved in the reasoning process.

Table 3. Performance of tumor classification

Metric

Tumor classification

Training cohort
(HUMC, INHA, CNUH)

Test cohort
(AJMC)

AUROC 0.9048 (0.8826–0.9210) 0.8922 (0.8714–0.9224)
F1 score 0.7628 (0.7482–0.7871) 0.7632 (0.7486–0.7822)
Accuracy 0.8321 (0.8126–0.8488) 0.8251 (0.8018–0.8432)

A performance table of tumor/non-tumor region classification models learned
using the WSSS4LUAD dataset. Indicators such as AUROC, F1 score, and accu-
racy were used in the training datasets (HUMC, INHA, and CNUH) and the
test/verification datasets (AJMC).
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EMP score and histopathological pattern analysis
Table 6 presents the results of the chi-square test anal-
ysis of the histopathological patterns of the WSIs and
the presence of EGFR mutations. EGFR-positive sam-
ples showed a significant relationship with the lepidic
pattern (p = 0.0479), and EGFR wild-type samples
showed a significant relationship with the solid pattern
(p = 0.0047), which is consistent with previous
studies [46]. We divided the samples into low and
high groups based on the median EMP score and ana-
lyzed the predominant histopathological patterns
(Table 7). A solid pattern was observed significantly
more in the group with low EMP scores (p = 0.0001).
Papillary (p = 0.0038) and acinar (p = 0.0255) pat-
terns were observed significantly more in the group
with high EMP scores.

Discussion

In this study, we developed an MIL-based deep learn-
ing model to analyze the prevalence of EGFR muta-
tions in WSIs of patients with lung adenocarcinoma.
Several studies have confirmed that specific histopath-
ological patterns appear in tumors that contain EGFR
mutations. In 2009, Ninomiya et al reported that
micropapillary patterns were associated with EGFR
mutations [47]. In 2014, Kadota et al reported that the
lepidic-predominant group was associated with EGFR
mutations (p < 0.011), whereas papillary- and solid-
predominant tumors were associated with wild-type
EGFR [46]. More recently, in 2021, Saito et al
reported that the pure micropapillary nests group was

associated with EGFR mutations, whereas the small
solid nests group was associated with wild-type
EGFR [48]. These examples suggest the possibility
of predicting EGFR mutations through the histopath-
ological pattern analysis of WSIs. Furthermore, previ-
ous reports [49,50] on the close association between
histopathological patterns of EGFR mutations and the
therapeutic effects of EGFR-TKIs further highlight
the importance of histopathological pattern studies
using WSIs.
However, tumor heterogeneity is a major challenge

when predicting mutations using WSIs. Not all tumor
cells contain the same genetic alterations [51], and
EGFR mutations are only observed in a subset of
tumor cells [52]. Existing MIL models are limited in
that they focus on learning patches with strong fea-
tures based on attention scores [22] and fail to learn
diverse histopathological patterns [46–50] arising from
tumor heterogeneity. To address this problem, we
introduced a masking strategy based on patch
probabilities [40] during the learning process. We
advanced the existing patch-masking learning tech-
nique using a patch-masking scheduler strategy that
dynamically adjusts the masking ratio according to the
learning progress rather than using a fixed masking
ratio. Through this, our model focuses on learning the
features of patches with a high probability of EGFR
mutation presence in the early stages of learning and
gradually includes patches with lower probabilities as
learning progresses. This strategy enables the model to
comprehensively learn diverse and heterogeneous histo-
pathological features associated with EGFR mutations.
In MIL, extracting diverse features at the patch level

is crucial, and convolutional neural network (CNN)
models are primarily used [53–56]. However, CNNs
have the limitation of primarily focusing on local fea-
tures within a patch, while ignoring the global con-
text and relative positional information of the cells
[57–59]. Recently, ViTs [60] have gained attention as
alternatives to CNNs. ViTs extract features by
reflecting cell-to-cell interactions through a self-
attention mechanism and position encoding [58,61].
Furthermore, ViTs can generate high-level repr-
esentations without additional fine-tuning through
unsupervised learning techniques such as DINO [36].

Table 4. Performance of MIL models in EGFR mutation prediction
Ours MHIM DSMIL ABMIL

AUROC 0.7680 (0.7607–0.7720) 0.7441 (0.7381–0.7508) 0.7210 (0.7170–0.7302) 0.7021 (0.6982–0.7094)
AUPRC 0.8391 (0.8326–0.8430) 0.8098 (0.7983–0.8124) 0.7904 (0.7862–0.8022) 0.7622 (0.7584–0.7712)

Table comparing the performance of multiple-instance learning (MIL) models developed for EGFR mutation prediction. AUROC and AUPRC values of the proposed
model (Ours) and existing methods (MHIM, DSMIL, and ABMIL) are presented.
AUPRC, area under the precision-recall curve.

Table 5. Spearman correlation between VAF and EMP score
512 x 512 pixel patches 1024 x 1024 pixel patches

Coefficient p value Coefficient p value

Total 0.3038 0.0285 0.3708 0.0067
p.L858R 0.4705 0.0087 0.1704 0.3689
exon 19 del 0.0412 0.8553 0.5918 0.0037

Correlation between the variant allele frequency (VAF) and the EMP score of
EGFR mutations by Spearman correlation analysis. The differences according
to patch size (512 x 512 / 1024 x 1024 pixels) and EGFR mutation subtype
are shown.
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We demonstrate the effectiveness of our methodology
by utilizing a large-scale dataset collected from a
multi-institutional cohort. Prior to predicting EGFR
mutations, we developed a model to classify tumor
and non-tumor regions in WSIs. Through this process,
the EGFR mutation prediction model considers only
the patch images predicted as tumors for EGFR muta-
tion prediction. This two-stage approach minimizes the
influence of non-tumor tissues on WSI analysis and
allows the model to focus on learning the characteris-
tics of the tumor region. The developed model showed
superior performance to existing MIL-based models
(Table 4). This suggests that the patch-masking sched-
uler strategy is effective for our dataset. Future studies
with larger cohorts, including more lepidic cases,
would be needed to further investigate the relationship
between the lepidic subtype and EMP score predicted
by the AI model.
When the allele frequency of EGFR mutations is

low, other pathways are more likely to be involved in
tumor pathogenesis. Therefore, at the treatment strat-
egy development stage, it is necessary to test for alter-
ations in other druggable targets in addition to EGFR.

Previous studies have focused primarily on predicting
the presence of EGFR mutations. However, our study
predicted the EMP score, that is, the degree of EMP,
using an AI model. By utilizing this, medical profes-
sionals can predesign the scope of genetic testing for
patients, preventing unnecessary medical expenses.
With future technological advancements, personalized
treatment strategies can be offered to patients.
Our study has some limitations. First, we trained the

model using only Korean lung cancer tissue data,
which does not reflect the characteristics of diverse
races and regions. Because the histopathological pat-
terns of lung cancer may vary according to race and
region, validation using data from other countries
and races is necessary. However, our study demon-
strated some degree of generalizability using data col-
lected from four large institutions.
Second, we confirmed that the deep learning model

identified EGFR mutation regions differently depen-
ding on the EGFR subtype (exon 19 del, p.L858R)
and size and number of patches. This suggests that
each EGFR subtype has distinct histopathological
characteristics that may manifest differently depending

Figure 5. EGFR prevalence heatmaps (EMP scores) and VAFs. Heat maps showing the probability of EGFR mutation predicted by the AI
model for each WSI. They visually represent that higher VAF scores correspond to more areas predicted to be EGFR mutation positive.

Table 6. Clinical analysis based on predominant growth pattern
and EGFR mutation

Predominant growth pattern
EGFR wild-type

(n = 69)
EGFR mutation
(n = 128) p value

Lepidic N 68 115 0.0479
Y 1 13

Solid N 53 118 0.0047
Y 16 10

Acinar N 28 36 0.1049
Y 41 92

Papillary N 64 120 1
Y 5 8

Micropapillary N 66 125 0.7291
Y 3 3

Results of distribution difference analysis by chi-square test of predominant
histopathological growth patterns (lepidic, solid, acinar, papillary, and
micropapillary) according to the presence or absence of EGFR mutations.

Table 7. Predominant growth pattern and EMP score
Predominant growth pattern EMP low EMP high p value

Lepidic N 92 91 0.7967
Y 7 7

Solid N 76 95 0.0001
Y 23 3

Acinar N 40 24 0.0255
Y 59 74

Papillary N 98 86 0.0038
Y 1 12

Micropapillary Y 96 95 0.6876
N 3 3

Comparison results of the high/low group distribution of the EGFR mutation
prevalence (EMP) score according to each histopathological growth pattern.
The EMP score is an index that quantifies the prevalence of EGFR mutations in
the WSI predicted by the AI model.
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on patch size. To elucidate the clinical significance of
these findings, future studies will focus on classifying
EGFR mutation subtypes based on the histopathologi-
cal features differentially identified by the deep learn-
ing model at various patch size levels. Third, we
measured the prevalence ratio of EGFR mutations in
the entire tumor region and compared it with VAF and
histopathological patterns. However, considering the
intratumoral genetic heterogeneity, it is important to
examine the distribution of mutations at the single-
cell level. A comparison of the genetic profiles mea-
sured at the individual cell level by single-cell
sequencing with the regions of EGFR mutation pres-
ence predicted by our model could further strengthen
the utility of the model. However, the application of
current single-cell sequencing technologies to large-
scale analyses is difficult owing to cost and technical
limitations. Nevertheless, we anticipate that our
study, which utilizes deep learning to explore tumor
heterogeneity at the single-cell level, will serve as a
foundation for future research in this area.
In conclusion, the proposed method has great poten-

tial for mutation prediction from WSIs using DL. The
prediction of EGFR mutation status demonstrates the
possibility of its use as a rapid and primary screening
tool in clinical settings, particularly in scenarios where
tissue samples for molecular testing are unavailable.
Additionally, the method used to measure the preva-
lence of EGFR mutations in the entire tissue has the
potential to establish prognosis and treatment plans for
patients with EGFR mutant tumors. The learning
methods and models we propose are effective in con-
sidering various aspects of genomic analysis in WSIs
and can be utilized in various WSI analyses.
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