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a b s t r a c t 

Background: Prediction of antibiotic non-susceptibility based on patient characteristics and clinical status 

may support selection of empiric antibiotics for suspected hospital-acquired urinary tract infections (HA- 

UTIs). 

Methods: Prediction models were developed to predict non-susceptible results of eight antibiotic suscep- 

tibility tests ordered for suspected HA-UTI. Eligible patients were those with urine culture and suscepti- 

bility test results after 48 hours of admission between 2010–2021. Patient demographics, diagnosis, pre- 

scriptions, exposure to multidrug-resistant organisms, transfer history, and a daily calculated antibiogram 

were used as predictors. Lasso logistic regression (LLR), extreme gradient boosting (XGB), random forest, 

and stacked ensemble methods were used for development. Parsimonious models were also developed 

for clinical utility. Discrimination was assessed using the area under the receiver operating characteristic 

curve (AUROC). 

Results: In 10 474 suspected HA-UTI cases, the mean age was 62.1 ± 16.2 years and 48.1% were male. 

Non-susceptibility prediction for ampicillin/sulbactam, cefepime, ciprofloxacin, imipenem, piperacillin/ 

tazobactam, and trimethoprim/sulfamethoxazole performed best using the stacked ensemble (AUROC 

76.9, 76.1, 77.0, 80.6, 76.1, and 76.5, respectively). The model for ampicillin performed best with LLR (AU- 

ROC 73.4). Extreme gradient boosting only performed best for gentamicin (AUROC 66.9). In the parsimo- 

nious models, the LLR yielded the highest AUROC for ampicillin, ampicillin/sulbactam, cefepime, gentam- 

icin, and trimethoprim/sulfamethoxazole (AUROC 70.6, 71.8, 73.0, 65.9, and 73.0, respectively). The model 

for ciprofloxacin performed best with XGB (AUROC 70.3), while the model for imipenem performed best 

in the stacked ensemble (AUROC 71.3). A personalised application using the parsimonious models was 

publicly released. 

Conclusions: Prediction models for antibiotic non-susceptibility were developed to support empiric an- 

tibiotic selection for HA-UTI. 

© 2023 Elsevier Ltd and International Society of Antimicrobial Chemotherapy. All rights reserved. 
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Introduction 

Hospital-acquired urinary tract infections (HA-UTIs) account for 

40% of hospital-acquired infections [1 , 2] . Serious morbidity from 

HA-UTI remains high, and HA-UTI may often lead to urosepsis 

and septic shock, which can be fatal [3] . Antibiotic therapy is im- 

perative for the treatment of HA-UTIs; therefore, early initiation 

of appropriate antibiotic treatment is given on an empiric ba- 
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Figure 1. Decision support scheme for empirical antibiotics selection based on machine-learning model. 

sis [4] . Broad-spectrum antibiotics—such as ceftriaxone, cefepime 

(CFP), piperacillin-tazobactam (PPT), meropenem, imipenem (IPM), 

ciprofloxacin, and levofloxacin—are the most commonly recom- 

mended empiric antimicrobial selections for treating HA-UTI [5] . 

Decisions over which empiric antibiotic to prescribe remain chal- 

lenging, given the lack of head-to-head trials, especially in the con- 

texts of multiple patient-specific factors and continuous changes in 

institutional antimicrobial resistance patterns [6] . Which empiric 

antibiotic to use relies on clinical decisions, with limited clinical 

evidence only focused on the average treatment effect. This may 

result in suboptimal and unfavourable practices like a worse early 

clinical response, longer hospital stay, and eventual increasing re- 

sistance [7 , 8] . 

To resolve such challenges in infectious diseases several stud- 

ies have reported on the development of prediction algorithms for 

personalised antimicrobial treatment [9–12] . However, these stud- 

ies had their own limitations, for example: some studies were 

conducted for all infectious diseases regardless of their classifi- 

cation [12] or showed insufficient performance [9–11] . When de- 

veloping a clinical prediction model, it is important to set up 

the prediction problem using available variables in a circumstance 

that resembles an actual situation [13] . However, most previ- 

ous studies have developed prediction models using key variables 

deemed to be clinically relevant, and thus have not fully con- 

sidered all predictors recommended by clinical guidelines – just 

real-world decisions. Local antibiogram information is easily over- 

looked [14 , 15] ; consequently, it was impossible to find a model 

to be applied in the settings of HA-UTI patients, and the trans- 

lation of these prediction models into clinical settings has been 

weak. 

This study aimed to develop prediction models to estimate the 

probability of antibiotic non-susceptibility in patients with sus- 

pected HA-UTIs. Further, the models were translated to clinical ap- 

plications via explainable features to propose patient-specific em- 

pirical antibiotics ( Figure 1 ). 

Methods 

Study Setting and Definition 

This study was conducted with a retrospective population- 

based analysis using an electronic health record database from 

Ajou University School of Medicine, South Korea, which is format- 

ted into the Observational Medical Outcomes Partnership (OMOP) 

common data model version 5.3.1 [16] . 

The study population included patients who were aged ≥ 18 

years and thought to have HA-UTIs managed between 2010–2021 

at Ajou University Medical Center. Patients with suspected HA-UTI 

were defined as those who had first urine culture and antibiotic 

susceptibility (C&S) tests ordered at least 48 hours after being ad- 

mitted (index date). Each qualified hospitalisation was counted as a 

separate index admission. Patients who had urine C&S tests within 

30 days before the index date were excluded to ensure that the 

first case was tested in the hospital. 

Outcomes were non-susceptibility (including resistant and in- 

termediate) to eight antibiotics among bacterial colonies grown 

from the urine culture samples. Cases in which the colony did not 

grow in the sample or had no test result (including missing) were 

excluded. These target antibiotics were ampicillin (AMP), ampi- 

cillin/sulbactam (AMS), CFP, ciprofloxacin (CIP), gentamicin (GEN), 

IPM, PPT, and sulfamethoxazole/trimethoprim (SXT). These antibi- 

otics are commonly tested for susceptibility at this medical centre 

when HA-UTI is suspected. 

Model Development and Validation 

The models were developed using machine learning algorithms, 

including Lasso logistic regression (LLR), extreme gradient boosting 

(XGB), random forest (RF), and stacked ensemble method [17 , 18] . 

The stacked model was developed using two-level architecture 

consisting of level 0 and level 1 models. The LLR, XGB, and RF 
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models were used as level 0 models, and XGB was used for the 

level 1 model. All hyperparameters were optimised by the grid 

searching method. 

The data were split at a ratio of 75:25 for the training and test 

sets, respectively. Three-fold cross-validation was used in the train- 

ing process. The performance of the models was evaluated based 

on the accuracy, discrimination, and calibration of the final models 

using the test set [19] . The accuracy of the model was calculated 

as the percentage of the total correctly classified (the sum of true 

positive and true negative per total case). Model discrimination 

was evaluated by calculating the area under the receiver operat- 

ing characteristic curve (AUROC) and the area under the precision- 

recall curve (AUPRC). Model calibration was evaluated using the 

slopes of the calibration plots according to the Hosmer-Lemeshow 

method [20] . The final models for each antibiotic were decided ac- 

cording to their discrimination based on the AUROC. 

Model Specification 

Candidate predictors were demographics (age, sex), diagnostic 

codes, medications, observations (obesity, smoking, etc.), proce- 

dure, and visit records. In particular, previous antibiotic exposure, 

transfer records (whether transferred from other tertiary health- 

care systems or skilled nursing facilities), previous exposure to 

multidrug-resistant organisms (MDROs) and daily-calculated an- 

tibiotic non-susceptibility rates were included (Supplementary Ta- 

ble E1). All predictors, except age and antibiotic non-susceptibility 

rates, were dichotomised as binary variables. The diagnoses were 

differentiated according to clinical aspects (e.g. diagnostic codes 

were characterised with different time periods). Comorbid diag- 

noses (e.g. hypertension, diabetes mellitus, hyperlipidaemia) were 

extracted from between the index date and 1 year before; however, 

the current conditions (e.g. pneumonia, sepsis) were defined based 

on diagnostic codes at the index date only. Previous exposure to 

antibiotics and corticosteroids was included, and antibiotics were 

differentiated according to their classifications, formulations, and 

time periods. 

To avoid inaccurate predictions due to variations in the dis- 

tribution of historical antibiotic resistance rates, the concept of 

daily-calculated non-susceptibility rates was introduced and incor- 

porated into these models. Similar to the traditional antibiogram, 

non-susceptibility rates were defined as the incidence rates of re- 

sistance (R) and intermediate susceptibility (I) within 90 days be- 

fore the index date. Non-susceptibility rates were determined for 

11 bacterial species that commonly cause UTIs: Escherichia coli, 

Klebsiella pneumoniae, Enterobacter aerogenes, Enterobacter cloacae, 

Serratia marcescens, Acinetobacter baumannii, Pseudomonas aerugi- 

nosa, Enterococcus faecalis, Enterococcus faecium, Staphylococcus au- 

reus , and coagulase-negative staphylococci (Supplementary Table 

E2). All calculations were conducted on a daily basis at a hospi- 

tal level. Only covariates with missing values < 10% were included 

as predictors, and missing values were imputed by the exponential 

weighted moving average method [21] . 

Models using two feature selection strategies were developed: 

full models and parsimonious models. The full models included 

all available features; however, this approach has less applicability 

and utility for clinical settings so parsimonious models with se- 

lected features were also developed. Feature selections for the par- 

simonious models were based on the variable importance ( β co- 

efficient) of the Lasso shrinkage logistic regression model. Features 

with strong correlations (Pearson’s coefficient > 0.7) were removed 

to resolve multicollinearities and validated with the variance infla- 

tion factor < 10.0. The additional step for the feature selection was 

conducted by experts with clinical knowledge for improving bio- 

logical plausibility. If a strong correlation was found between vari- 

ables, the variable with the more comprehensive information was 

selected. The variable importance was calculated by the Shapley 

Additive exPlanations (SHAP) values [22] , which is a model agnos- 

tic method. 

Development of Personalised Insusceptibility Estimator 

The Personalised Insusceptibility Estimator (PIE) application 

was developed for clinical translation, based on parsimonious 

models in the form of an interactive R shiny. This application took 

baseline covariates as inputs and returned the estimated probabil- 

ity of non-susceptibilities for each antibiotic agent. For the fea- 

sibility test of application, it was intended to further investigate 

the probability of non-susceptibility by cumulatively adding one 

variable to the baseline demographic to see how the probability 

changed with the accumulation of predictors in four clinical sce- 

narios. The non-susceptibility changes per variable added on or off

were also determined (like an ablation test). 

All analyses were conducted using R, version 4.1.0 (R Foun- 

dation for Statistical Computing, Vienna, Austria) and its open- 

source statistical packages, including the Health Analytics Data- 

to-Evidence Suites packages of Observational Health Data Sciences 

and Informatics. 

Results 

Population Characteristics 

There were 10 474 suspected HA-UTI cases; the mean patient 

age was 62.1 ± 16.2 years and 48.1% were male. The median and 

interquartile range of length of hospital stay was 12.0 (18.0) days. 

The summary information for each antibiotic susceptibility test is 

presented in Table 1 . The numbers of urine samples for susceptibil- 

ity tests to each antibiotic were as follows: 5025 for AMP, 4701 for 

AMS, 3771 for CFP, 5929 for CIP, 6084 for GEN, 7572 for IMP, 3762 

for PPT, and 5402 for STX. Ampicillin (48.2%) yielded the high- 

est non-susceptible rate, and Escherichia coli (44.2%) was the most 

non-susceptible species to AMP. 

Model Specification 

The full models were developed using ca. 20 0 0 0 predictors, 

including demographics, diagnosis, medications, etc. The detailed 

number of predictors is presented in Supplementary Table E3. Af- 

ter the feature selection process for the development of the parsi- 

monious models, 140 variables were finally included as model pre- 

dictors. 

The final predictors included demographics (sex and age), 

diagnosis, drugs, procedures, visit records, and calculated non- 

susceptibility rate. The detailed final predictors of the parsimo- 

nious models are presented in Supplementary Table E1. The cal- 

culated non-susceptibility rates were also included in the mod- 

els. Seventy-six non-susceptibility rates (one for each antibiotic- 

microorganism pair) were included (Supplementary Table E2). 

Variable importance, according to the SHAP value of each predic- 

tor, was plotted for each model ( Figure 2 , Supplementary Figure 

E1). Age, sex, and previous exposure to antibiotics were commonly 

positioned within the top 15 predictors of non-susceptibility in the 

CIP and PPT models. The calculated non-susceptibility rates were 

mainly selected as important predictors in the LLR models. The 

overall figures for all parsimonious models are presented in Sup- 

plementary Figure E1. 

Model Performance 

Table 2 presents the discrimination performance for the full 

and parsimonious models for each antibiotic susceptibility test. 

3 



C. Kim, Y.H. Choi, J.Y. Choi et al. International Journal of Antimicrobial Agents 62 (2023) 106966 

Table 1 

Baseline patient characteristics and urine culture results. 

Variables AMP 

( n = 5025) 

AMS 

( n = 4701) 

CFP 

( n = 3771) 

CIP 

( n = 5929) 

GEN 

( n = 6084) 

IMP 

( n = 7572) 

PPT 

( n = 3762) 

SXT 

( n = 5402) 

Age, mean ± SD 64.6 ± 15.6 64.4 ± 15.8 63.8 ± 16.1 63.5 ± 16.2 62.9 ± 16.2 62.5 ± 16.1 63.8 ± 16.1 63.1 ± 16.3 

Female, n (%) 3017 (60.0) 2658 (56.5) 1648 (56.3) 3065 (51.7) 3103 (51.0) 4176 (55.2) 2118 (56.3) 2769 (51.3) 

Length of stay, days, median 

(IQR) 

11.0 (15.0) 12.0 (16.0) 13.0 (17.0) 12.0 (16.0) 12.0 (17.0) 13.0 (19.0) 13.0 (18.0) 12.0 (17.0) 

Cancer, n (%) 1937 (38.5) 1737 (36.9) 1173 (31.1) 2186 (36.9) 2145 (35.3) 2612 (34.5) 1305 (34.7) 1930 (35.7) 

Type 2 diabetes mellitus, n (%) 1211 (24.1) 1092 (23.2) 795 (21.1) 1376 (23.2) 1436 (23.6) 1655 (21.9) 887 (23.6) 1276 (23.6) 

Pneumonia, n (%) 689 (13.7) 715 (15.2) 489 (13.0) 944 (15.9) 970 (15.9) 1193 (15.8) 592 (15.7) 872 (16.1) 

Previous antibiotic use, n (%) 4496 (89.5) 4242 (90.2) 2981 (90.4) 5336 (90.0) 5522 (90.1) 6705 (88.5) 3420 (90.9) 4861 (90.0) 

Transferred, n (%) 6 (0.1) 6 (0.1) 4 (0.1) 5 (0.1) 6 (0.1) 8 (0.1) 5 (0.1) 4 (0.1) 

Previous MDRO exposure, n (%) 

CRE 38 (0.8) 41 (0.9) 33 (1.0) 40 (0.7) 42 (0.7) 52 (0.7) 40 (1.1) 38 (0.7) 

ESBL 306 (6.1) 313 (6.7) 257 (7.8) 341 (5.8) 354 (5.8) 487 (6.4) 285 (7.6) 317 (5.9) 

MRSA 367 (7.3) 421 (9.0) 329 (10.0) 579 (9.8) 610 (10.0) 871 (11.5) 383 (10.2) 558 (10.3) 

VRE 145 (2.9) 136 (2.9) 93 (2.8) 145 (2.4) 143 (2.4) 254 (3.4) 108 (2.9) 127 (2.4) 

Non-susceptibility, n (%) 2421 (48.2) 758 (16.1) 878 (23.3) 1745 (29.4) 998 (16.4) 842 (11.1) 486 (12.9) 1493 (27.6) 

Prevalent pathogen 

In all samples, (%) E.coli 

(23.0) 

E.coli 

(24.6) 

E.coli 

(33.4) 

E.coli 

(18.6) 

E.coli 

(19.0) 

E.coli 

(30.2) 

E.coli 

(30.7) 

E.coli 

(20.4) 

In insusceptible samples, (%) E.coli 

(44.2) 

E. faecium 

(56.9) 

E.coli 

(60.6) 

E.coli 

(36.4) 

E.coli 

(46.5) 

E. faecium 

(55.2) 

E.coli 

(29.6) 

E.coli 

(36.6) 

Abbreviations: AMP, ampicillin; AMS, ampicillin and sulbactam; CFP, cefepime; CIP, ciprofloxacin; GEN, gentamicin; PPT, piperacillin and tazobactam; SXT, trimethoprim 

and sulfamethoxazole; SD, standard deviation; IQR, interquartile range; MDRO, multidrug-resistant organisms; CRE, carbapenem-resistant Enterobacteriaceae; E. coli, Es- 

cherichia coli; E. faecium, Enterococcus faecium ; ESBL, extended-spectrum beta-lactamase–producing Enterobacteriaceae; MRSA, methicillin-resistant Staphylococcus aureus ; 

VRE, vancomycin-resistant enterococci. 

Cancer, pneumonia, and type 2 diabetes mellitus were determined within 365 days before the index date. 

Transferred means that the patient was transferred from a tertiary healthcare system or nursing facility. 

Table 2 

Discrimination performances of non-susceptibility prediction models according to the full covariate and parsimonious covariate strategies. 

AMP 

( n = 5025) 

AMS 

( n = 4701) 

CFP 

( n = 3771) 

CIP 

( n = 5929) 

GEN 

( n = 6084) 

IMP 

( n = 7572) 

PPT 

( n = 3762) 

SXT 

( n = 5402) 

Outcome rate (%) 48.2 16.1 23.3 29.4 16.4 11.1 12.9 27.6 

Full model, AUROC (%) 

LLR 73.4 ‡ 71.0 66.0 71.7 62.0 61.8 69.5 73.9 

GBM 72.4 74.8 70.7 70.4 66.9 ‡ 73.0 65.0 72.1 

RF 72.3 72.2 67.3 70.7 65.9 75.2 68.8 75.7 

Stacked ensemble 68.8 76.9 ‡ 76.1 ‡ 77.0 ‡ 64.0 80.6 ‡ 76.1 ‡ 76.5 ‡ 

Parsimonious model, 

AUROC (%) 

LLR 70.6 § 71.8 § 73.0 § 70.0 65.9 § 70.8 64.4 73.0 §

GBM 70.2 68.6 70.4 70.3 § 62.3 70.7 67.2 § 71.0 

RF 69.1 67.0 70.9 69.8 59.4 68.3 63.9 68.5 

Stacked ensemble 63.7 55.9 57.4 62.5 54.0 71.3 § 56.0 54.5 

Abbreviations: AMP, ampicillin; AMS, ampicillin and sulbactam; CFP, cefepime; CIP, ciprofloxacin; GEN, gentamicin; PPT, piperacillin and tazobactam; SXT, trimethoprim and 

sulfamethoxazole; AUC, area under the receiver operating characteristics curve; LLR, Lasso logistic regression; GBM, gradient boosting machine; RF, random forest; Stacked, 

stacked ensemble. 
‡ Highest performance among different algorithms applied to the full models. 
§ Highest performance among different algorithms applied to parsimonious models. 

Among the full models, the models applied to the stacked ensem- 

ble method for six antibiotics (AMS, CFP, CIP, IMP, PPT, and SXT) 

had the highest performance (AUROC in test set 76.9%, 76.1%, 77.0%, 

80.6%, 76.1%, and 76.5%, respectively). The model to which LLR was 

applied for AMP (AUROC 73.4%) and the model to which GBM was 

applied for GEN (AUROC 66.9%) had the highest AUROC values. The 

detailed performance results—including AUROC, AUPRC, and cal- 

ibration slope—are presented in Supplementary Table E3. In the 

parsimonious models, the model using the LLR algorithm had the 

highest AUROCs in the five susceptibility tests to AMP, AMS, CFP, 

GEN, and SXT: 70.6%, 71.8%, 73.0%, 65.9%, and 73.0%, respectively. 

In the models for CIP and PPT, GBM yielded the highest AUROCs 

(70.3% and 67.2%, respectively) compared with other algorithms. 

The stacked ensemble method showed the highest AUROC associ- 

ated with IMP testing (71.2%). The detailed results are presented in 

Supplementary Table E4. 

Personal Insusceptibility Estimates 

An R-based shiny application for non-susceptibility calculation, 

PIE, was developed using the finally selected parsimonious models 

based on highest AUROC ( Figure 3 ). The personal estimates of an- 

tibiotic non-susceptibility were calculated using PIE, and this ap- 

plication was applied to simulations of various clinical scenarios. 

The PIE application has been released online ( https://cskim-abmi. 

shinyapps.io/PIEapp/ ). 

Figure 4 shows the probability of non-susceptibility to each an- 

tibiotic with four example cases: (a) a 40-year-old woman hospi- 

talised on 25 December 2018; (b) a 40-year-old man; (c) a 70- 

year-old woman; and (d) a 40-year-old woman hospitalised on 

7 February 2011. The patients’ clinical variables were accumu- 

lated one by one from left to right and used to calculate non- 

susceptibility rates per algorithm. The estimates varied according 
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Figure 2. Predicted non-susceptibility rate for various patients’ scenarios. From left to right, the characteristics corresponding to the column are accumulated. (A) Base- 

line case with 40-year-old female patient hospitalised on 25 December 2018; (B) 40-year-old male patient hospitalised on the same date; (C) 70-year-old female patient 

hospitalised on the same date; (D) 40-year-old female patient hospitalised on 7 February 2011. 

Abbreviations: MDRO, multidrug-resistant organism; abx, antibiotics; IV, intravenous; PO, per os; AMP, ampicillin; AMS, ampicillin/sulbactam; CFP, cefepime; CIP, 

ciprofloxacin; GEN, gentamicin; PPT, piperacillin/tazobactam; SXT, sulfamethoxazole/trimethoprim; IPM, imipenem; HT, hypertension; DM, diabetes mellitus; CKD, chronic 

kidney disease; ICU, intensive care unit; VRE, vancomycin-resistance enterococci; MRSA, methicillin-resistant Staphylococcus aureus ; CRE, carbapenem-resistant Enterobacte- 

riaceae; ESBL, extended spectrum beta-lactamase producing Enterobacteriaceae; PC, penicillin; Cefa, cephalosporin; FQ, fluoroquinolone. 

to demographic characteristics in all cases. Most estimates repre- 

sented higher non-susceptibility for women than men and older 

than young individuals. Results also differed between patients with 

the same demographic characteristics but different hospitalisation 

dates. This calculator was also used to compare estimates while 

changing specific predictors one by one (see Supplementary Table 

E5). Predictors related to previous antibiotic exposure were associ- 

ated with increased non-susceptible probabilities. 

Discussion 

This study developed machine learning-based models to predict 

patient-specific non-susceptible probabilities to broad-spectrum 

antibiotics among hospitalised patients with clinically suspected 

HA-UTIs. Further, parsimonious prediction models were developed 

for the purpose of clinical translation to adopt as a decision- 

supporting tool for the selection of personalised empiric antibi- 

otics. A series of prediction algorithms of LLR, XGB, RF, and stacked 

ensemble was developed to obtain better discrimination and cal- 

ibration. The values of AUROC and AUPRC, and calibration plot 

slopes of the 64 models indicated high performance in the task 

of predicting non-susceptibility outcomes, and the highest AUROC 

values of the best performance models among four algorithms re- 

mained across the various antibiotics, ranging 65.4–80.6%; these 

were superior to those determined by previous similar studies that 

involved predicting such resistance rates [10 , 11] . 

In addition to performance of the prediction models, there were 

several meaningful advantages to be noted. In practice, antibiotic 

resistance data derived from an institutional antibiogram (‘local 

antibiogram’) are important components of the treatment success 

associated with the initial selection of empiric antibiotics, and their 

use in clinical practice is strongly recommended [14 , 23–25] . How- 

ever, many frontline clinicians are faced with outdated accessibil- 

ity to the use of resistance rates due to scheduled release (e.g. 

6 months), as well as unknown antibiotic resistance profiles with 

limited MDRO prevalence data [24] . In the current study, the mod- 

els embedded a daily calculation function of non-susceptibility rate 

of antibiotics to common causative pathogens, which was designed 

to include both resistance and intermediate susceptible data based 

on local C&S results within the 90 days before the index date. 

It increased the applicability of the models by providing timely 

changes of non-susceptibility results of the institution over the co- 

hort observation window periods; it is believed that this led to 

more accurate predictability for the treatment of appropriate em- 

5 



C. Kim, Y.H. Choi, J.Y. Choi et al. International Journal of Antimicrobial Agents 62 (2023) 106966 

Figure 3. Variable importance based on the absolute Shapley additive explanations (SHAP) of two different prediction models (the ciprofloxacin and piperacillin/tazobactam 

models). SHAP is a model-agnostic tool that assesses importance through a predictor’s contribution to a given prediction compared with the average prediction. 

Abbreviations: LLR, Lasso logistic regression; RF, random forest; XGB, extreme gradient boosting machine; MDRO, multidrug-resistant organism, IV, intravenous; PO, per 

os; AMP, ampicillin; AMS, ampicillin/sulbactam; CFP, cefepime; CIP, ciprofloxacin; GEN, gentamicin; PPT, piperacillin/tazobactam; SXT, sulfamethoxazole/trimethoprim; IPM, 

imipenem; HT, hypertension; DM, diabetes mellitus; CKD, chronic kidney disease; ICU, intensive care unit; VRE, vancomycin-resistance enterococci; MRSA, methicillin- 

resistant Staphylococcus aureus ; CRE, carbapenem-resistant Enterobacteriaceae; ESBL, extended-spectrum beta-lactamase producing Enterobacteriaceae; PC, penicillin; Cefa 

or Cepha, cephalosporin; FQ, fluoroquinolone. 

piric antibiotics. Of note, an intermediate susceptibility category 

was included as non-susceptibility to follow the clinical decision 

consideration. A previous study used susceptibility data in the pre- 

diction models that relied on expert consensus to fill in unreported 

susceptibility values, which constituted almost half of the data, and 

this gave rise to concern about subjective bias and frequent up- 

dates of the models [10] . Another pivotal point of the current mod- 

els was that they addressed the problem of a traditional antibi- 

ogram not reflecting patient characteristics, by incorporating pa- 

tient demographics and infection-related information. 

Directly motivated by the need for clinical translation to these 

findings, a predictor shrinkage in the full models was proposed 

to induce parsimonious models. The goal beyond developing the 

prediction models was clinical implementation. Therefore, the full 

models were derived; however, as with other prediction algo- 

rithms, the full prediction models contained many ( > 20 0 0 0 

predictors) independent features, which limited the capacity for 

clinical interpretation and translation. Thus, these features were 

mapped into subgroup clusters, and the variables of major sub- 

group clusters were used to build parsimonious prediction models 

for implementing patient care. The AUROCs of the parsimonious 

models reflected similar discrimination and calibration to the per- 

formance of the full prediction models, and highly observed fea- 

tures were consistently matched with previously well-reported or 

permutation-based factors. It is believed that this process helped 

disentangle the complex relationships among the variables, while 

providing reasonable values for the number of predictors. If the 

variables that are highly ranked as important for each algorithm 

are examined, it can be seen that they are different from the Lasso 

logistic regression and tree-based XGB and RF. Lasso logistic re- 

gression had more continuous variables, while XGB and RF did not; 

this is likely due to the different prediction algorithms that handle 

continuous and categorical variables [26] . 

The feasibility of the parsimonious models was further assessed 

by ablation-like experiments and patient case scenarios. As ex- 

pected, the parsimonious algorithms revealed distinct differences 

in non-susceptibility as a function of patient characteristics, clin- 

ical observations, disease severity, history of MDRO infection, and 

previous antibiotic exposure. For example, the models predicted a 

higher non-susceptible probability in the 70-year-old woman than 

the 40-year-old woman, and higher non-susceptible probability 

with previous antibiotics exposures was also able to be confirmed. 

To maximise the potential feasibility of the decision-supporting 

function, a PIE application was designed where the listed op- 

tions consisted of features with final parsimonious models. The 

PIE application allowed clinicians to easily visualise the patient- 

specific non-susceptible probability to eight broad-spectrum an- 

tibiotics. The PIE provided further detailed information on com- 

parative resistance distribution, indicating the interquartile loca- 

tion of a patient’s resistance relative to the median value of the 

cohort population, the resistance rates of pathogens to other an- 

tibiotics, and the resistance trend in previous years. Thus, clinicians 

can make informed antibiotic selection decisions based on perti- 

nent data regarding patient demographics, clinical aspects, and in- 

stitutional environmental components. Moreover, it was developed 

based on the OMOP formatted database, so it is applicable to other 

institutions and can be updated in line with the OMOP common 

data model conversion cycle. 

This study had some limitations. First, the eligible criteria for 

the study population did not include HA-UTI diagnosis codes be- 
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Figure 4. Shiny application including patient clinical characteristics input and calculated results for probabilities of predicted non-susceptibility. The results of individual 

antibiotic susceptibility tests were predicted through clinical information. 

Abbreviations: MDRO, multidrug-resistant organism; IV, intravenous; PO, per os; AMP, ampicillin; AMS, ampicillin/sulbactam; CFP, cefepime; CIP, ciprofloxacin; GEN, gentam- 

icin; PPT, piperacillin/tazobactam; SXT, sulfamethoxazole/trimethoprim; IPM, imipenem; HT, hypertension; DM, diabetes mellitus; CKD, chronic kidney disease; ICU, intensive 

care unit; VRE, vancomycin-resistance enterococci; MRSA, methicillin-resistant Staphylococcus aureus ; CRE, carbapenem-resistant Enterobacteriaceae; ESBL, extended-spectrum 

beta-lactamase producing Enterobacteriaceae; PC, penicillin; Cefa, cephalosporin; FQ, fluoroquinolone. 

cause those specifically representing hospital-acquired or nosoco- 

mial infections were presumably not often recorded by clinicians 

in the electronic health records, and there was concern about un- 

derutilisation of actual HA-UTI patient data. Moreover, the algo- 

rithms were intended to be built based on the times of urine C&S 

test orders as a surrogate of the clinicians’ suspicion of UTI. Sec- 

ond, the average performance of the parsimonious models was ca. 

AUROC 70%, and further effort is required to improve performance 

despite high discrimination (which does not directly mean high 

predictability) in clinical settings. The limited performance could 

be partly due to unique characteristics of acute illness of infec- 

tion, representing sudden onset, rapid progression, urgent treat- 

ment, multiple therapies, and finally a short course. This may be 

because it is difficult for the model to learn consistent tenden- 

cies of the predictors. Nonetheless, the models showed moderate 

discrimination and excellent calibration performance. Continuous 

effort s to improve performance should be maintained for better 

prediction of pathogen non-susceptibility to antibiotics for treat- 

ing HA-UTI. Third, it is important to note that the feasibility of the 

aforementioned does not allow causal inferences to be made about 

the predictors utilised in the models [ 27,28 ]. Since the primary ob- 

jective of this study was to develop a good performance predictive 

model, not inferring predictors’ direction and magnitude of associ- 

ation, the importance of the predictors cannot be linked to causal 

inference. Lastly, the applicability of the prediction models in pa- 

tient care needs to be validated through prospective clinical trials. 

Retrospective data were used to develop the model and validate its 

performance. In the future, well-designed prospective clinical trials 

will need to be conducted to assess whether this model can actu- 

ally aid in empirical antibiotic prescribing. Despite the limitations, 

the results appear to be clinically applicable in predicting antibiotic 

non-susceptibility and facilitate the selection of empiric antibiotics. 

Conclusion 

Machine learning models were developed for predicting antibi- 

otic resistance to facilitate the selection of empiric antibiotics to 

treat HA-UTI. An application tool was developed for personalised 

antibiotic therapy selection. 
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